
Conformance Test Suite Manual Page 1 of 34

Candidate Conformance Test Suite Manual
For Testing Interface And Application

Code Against The FACETM Standard 2.1.1

Copyright © 2020, Institute of Software Integrated Systems (ISIS), Vanderbilt University

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 2 of 34

Copyright (c) Vanderbilt University, 2020

ALL RIGHTS RESERVED, UNLESS OTHERWISE STATED

This software, authored by Vanderbilt University under a contract awarded to and managed by
Alion Science and Technology, was funded by the U.S. Government under Contract No.
FA8075-14-D-0014 and the U.S. Government has unlimited rights in this software. An unlimited
rights license means that the U.S. Government can use, modify, reproduce, release or disclose
computer software in whole or in part, in any manner, and for any purpose whatsoever, and to
have or authorize others to do so.

Vanderbilt University disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall Vanderbilt University be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of this software.

May contain products produced under DoD SENSIAC contract HC104705D4000 under the
sponsorship of the Defense Technical Information Center,
ATTN: DTIC-AI, 8723 John J. Kingman Rd., Ste 0944, Fort Belvoir, VA 22060-6218.
SENSIAC is a DoD Information Analysis Center Sponsored by the Defense Technical
Information Center.

Future Airborne Capability Environment (FACE™) Reference Architecture, ©2012 The Open
Group. FACE is a trademark of The Open Group in the United States and other countries.

Vanderbilt University acknowledges The Open Group for permission to include text/figures
derived from its copyrighted Future Airborne Capability Environment (FACE™) Reference
Architecture. FACE is a trademark of The Open Group in the United States and other countries.

Acronyms Used

TOG The Open Group
FACE Future Airborne Capability Environment
PCS Portable Components Segment
PSS Platform Specific Services
TSS Transport Services Segment
IOS Input/Output (I/O) Segment
OS Operating System
UoP Unit of Portability
USM UoP Supplied Model
SDM Shared Data Model
FGSL FACE Gold Standard Libraries

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 3 of 34

Table of Contents
Introduction..4
Installation And Configuration..4
 System Requirements..4
 Installation...4
 Configuration..5
Theory of Operation...8
Initializing the Conformance Test Suite...12
Setting Default Configuration..15
 Compiler Specific Functionality...15
Testing a Portable Components Segment (PCS) Application..16
Testing a Platform Specific Services (PSS) Segment..17
Testing a Transport Services Segment (TSS)...18
Testing a Data Model...19
Testing an I/O Services (IOS) Segment...20
Testing an Operating System (OSS) Segment...21
Considerations for Testing a C++ Segment...23
Considerations for using C and C++ together...23
Considerations for Testing an Ada Segment..23
Considerations for Testing a Java Segment...24
 Use of Approved Frameworks..24
 Unused Code Paths in Third-Party Libraries..25
Considerations for Testing a Data Model..26
Generating Gold Standard Libraries..26
Viewing Test Suite Results..28
Including Test Notes with Configuration...31
Test Suite Command Line Options:...31
Example Segments...32
Known Issues...33
Acknowledgments..33
References..34

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 4 of 34

Introduction

The Conformance Test Suite tests the following interfaces and applications for FACE Standard
Conformance:

1. Portable Components Segment (PCS) applications
2. Platform Specific Services (PSS) Segment applications
3. Transport Services Segment (TSS) interfaces
4. I/O Services (IOS) Segment interfaces
5. OS (POSIX and ARINC 653) interfaces

Testing is performed under the OS Partitions POSIX and ARINC 653 and the OS Profiles
General Purpose, Safety Base, Safety Extended, and Security. Testing procedures for each
interface and application type are listed in the chapters below.

Installation And Configuration

System Requirements
Before installation check the system requirements below to ensure the test suite will run on your
designated machine. The conformance test suite runs in either a Windows or Linux based
computer system. The software has been tested using Microsoft Windows 7 and Microsoft
Windows 10. Linux systems tested include Ubuntu 12.x and RHEL/CentOS 7.

Common system requirements

• Python 2.6+ (not 3.x, in Windows, be sure that the python executable is in your PATH)
• TkInter
• Java 1.8 JRE (be sure that Java is in your PATH)
• Browser (Firefox, Chromium, Chrome, Opera, Konquerer, Epiphany, or Internet

Explorer)
• Associated Compiler/Linker/Archiver used for the software under conformance test.
• Recommended 4GB+ RAM.

Optional software

The test suite can use the included pymake (https://developer.mozilla.org/en-US/docs/pymake)
in it's build process, however any GNU compatible make can be used. The native make on
Linux systems is considerably faster. MinGW and Cygwin have been used on Microsoft
Windows systems.

Installation
Select an installation location and decompress the test suite. To launch the test suite, execute the
runConformanceTest script (runConformanceTest.bat for Windows, runConformanceTest.sh for
Linux). The script checks for proper installation of Python, Java, and TkInter before launching
the Test Suite program.
Vanderbilt University www.isis.vanderbilt.edu ISIS

https://developer.mozilla.org/en-US/docs/pymake

Conformance Test Suite Manual Page 5 of 34

To conduct Java testing, an additional download and installation is required. Download the
Java add-on package for your platform and decompress the package into the top level of the
conformance tool such that
CONFORMANCE_TOOL_ROOT/Java_Conformance/JavaConformance(.exe) exists on your
system.

If you're performing Java testing on Windows, you will additionally need to download and install
this Microsoft runtime: https://www.microsoft.com/en-us/download/details.aspx?id=26999
Failure to do so will result in a message similar to the following: “The program can't start
because MSVCP100.dll is missing from your computer”.

Configuration
There is compiler specific information that will be needed to conduct conformance tests . This
information is stored in the compilerSpecific subdirectory.

NULL:

The NULL type must be configured according to your compiler's manual. This is done by edit
the following two files:

• compilerSpecific/C/systemLibraryDefinitions/CONFORMANCE_TEST_FACE_NULL.h
• compilerSpecific/C++/systemLibraryDefinitions/CONFORMANCE_TEST_FACE_NULL.h

Consult your compiler's manual to create the macro definition. The macro name you must define
is FACE_NULL. Do not define NULL itself which will be handled by the test suite based on
your definition of FACE_NULL.

Exact Types:

For C and C++ testing, the exact size types must be configured according to your compiler's
manual. This is done by editing the following two files:

• compilerSpecific/C/systemLibraryDefinitions/CONFORMANCE_TEST_FACE_EXACT_TYPES.h
• compilerSpecific/C+
+/systemLibraryDefinitions/CONFORMANCE_TEST_FACE_EXACT_TYPES.h

Consult your compiler's manual to create a typedef mapping between its intrinsic types and the
exact types needed for testing. The exact types needed are described in the table below.

Testing Type Name Description

FACE_int8_t 8-bit signed integer

FACE_int16_t 16-bit signed integer

FACE_int32_t 32-bit signed integer

FACE_int64_t 64-bit signed integer

Vanderbilt University www.isis.vanderbilt.edu ISIS

https://www.microsoft.com/en-us/download/details.aspx?id=26999

Conformance Test Suite Manual Page 6 of 34

FACE_uint8_t 8-bit unsigned integer

FACE_uint16_t 16-bit unsigned integer

FACE_uint32_t 32-bit unsigned integer

FACE_uint64_t 64-bit unsigned integer

FACE_size_t Unsigned integer type of the result of sizeof()

Most exact types will be covered by signed char, signed short, signed int, signed long, unsigned
char, unsigned short, unsigned int, and unsigned long. However, those types may not cover the
full spectrum of types necessary for testing. Your compiler may or may not provide other
compiler specific intrinsic types. Those types are typically but not always prefixed with
underscores. The following C and C++ programs can be used to assist in determining the types.

#include <stddef.h>
#include <stdio.h>

int main()
{
 printf("signed char is %2zd bits\n", sizeof(signed char) * 8);
 printf("signed short is %2zd bits\n", sizeof(signed short) * 8);
 printf("signed int is %2zd bits\n", sizeof(signed int) * 8);
 printf("signed long is %2zd bits\n", sizeof(signed long) * 8);
 printf("unsigned char is %2zd bits\n", sizeof(unsigned char) * 8);
 printf("unsigned short is %2zd bits\n", sizeof(unsigned short) * 8);
 printf("unsigned int is %2zd bits\n", sizeof(unsigned int) * 8);
 printf("unsigned long is %2zd bits\n", sizeof(unsigned long) * 8);
 printf("size_t is %2zd bits\n", sizeof(size_t) * 8);

 return 0;
}

#include <cstddef>
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 cout << "signed char is " << setw(2) << sizeof(signed char) * 8 << " bits" << endl;
 cout << "signed short is " << setw(2) << sizeof(signed short) * 8 << " bits" << endl;
 cout << "signed int is " << setw(2) << sizeof(signed int) * 8 << " bits" << endl;
 cout << "signed long is " << setw(2) << sizeof(signed long) * 8 << " bits" << endl;
 cout << "unsigned char is " << setw(2) << sizeof(unsigned char) * 8 << " bits" << endl;
 cout << "unsigned short is " << setw(2) << sizeof(unsigned short) * 8 << " bits" << endl;
 cout << "unsigned int is " << setw(2) << sizeof(unsigned int) * 8 << " bits" << endl;
 cout << "unsigned long is " << setw(2) << sizeof(unsigned long) * 8 << " bits" << endl;
 cout << "size_t is " << setw(2) << sizeof(size_t) * 8 << " bits" << endl;

 return 0;
}

OpenGL:

OpenGL libraries used by FACE have compiler specific details per their specifications. Macros,
types, and function decoration are among the things defined in these headers. Many
implementations will choose to use the Khronos provided headers. Other implementations may
define their own. Find these header files from your implementation of choice. Copy them into
the compiler specific directory as specified below. If those headers have other dependencies such
as POSIX, be sure to select the use of POSIX in your test configuration. If those headers have

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 7 of 34

other non-FACE dependencies those must be included in the compiler specific directory, and a
Verification Authority will decide on their validity.

• compilerSpecific/C/systemLibraryDefinitions/EGL/eglplatform.h

• compilerSpecific/C/systemLibraryDefinitions/GLES2/gl2platform.h

• compilerSpecific/C/systemLibraryDefinitions/KHR/khrplatform.h

• compilerSpecific/C++/systemLibraryDefinitions/EGL/eglplatform.h

• compilerSpecific/C++/systemLibraryDefinitions/GLES2/gl2platform.h

• compilerSpecific/C++/systemLibraryDefinitions/KHR/khrplatform.h

If those headers have other dependencies such as POSIX, be sure to select the use of POSIX in
your test configuration. If those headers have other non-FACE dependencies those must be
included in the compiler specific directory, and a Verification Authority will decide on their
validity.

Allowed Definitions:

There may also be compiler specific built-in functions/methods that cause linker errors even
when compiler and linking against the OS gold standard libraries (i.e., __main,
__stack_chk_fail). There may be valid graphics related calls that are not called out specifically
in the standard.

You may add allowed functions to the conformance test by editing the “CompilerSpecific”
source file in the CompilerSpecific/LANGUAGE/allowedDefinitions directory. You only need
to add a function stub, since these conformance test objects are never actually executed.
Compiler specific methods must be reported to the VA (and are included in the Test Suite
results). For all segments other than OSS, the compiler specific files system library definition
files (NULL, EXACT TYPES, OpenGL) should not change for a given tool chain. The allowed
definitions may vary. However, when testing an OSS, the allowed definitions file should be
empty, since you are testing the operating system libraries, and all necessary functions
should be defined.

The CTS expects Portable Components and Platform-Specific Services Segment (PCS, PSSS)
components to have main functions in their provided object files. Without a main function the
conformance test results are invalid. If a PCS or PSSS under test do not contain a main function,
a main function that fully exercises the component will need to be added to the conformance test.
This is most easily done by adding this to the “CompilerSpecific” source file and adding the
required include path to the compiler flags in the configuration. Alternatively, a separate object
containing the main function can be added to the object files that are undergoing conformance
testing.

Note: All source files in the CompilerSpecific/LANGUAGE/allowedDefinitions directory are
used to make the compilerSpecificGoldLib.a by the CTS during testing. The CTS automatically
cleans the object files in these directories between test runs. The user may choose to explicitly
clean up these object files by executing “make clean” in the CompilerSpecific/LANGUAGE
directory.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 8 of 34

Note: The sample directory contains examples of compiler specific files that may be valid for
your configuration.

Theory of Operation

For C, C++, and Ada code, conformance is determined by mating customer code with
corresponding conformant test code. Customer applications will be linked with FACETM test
interfaces. Customer interface libraries will be linked against by FACETM test applications. The
test interfaces provide all possible function calls, data types, and constants available to the
customer application. The test applications utilize all possible function calls, data types, and
constants that should be provided by the customer interface1. If the link passes, the customer
code is conformant. If the link fails, the customer code is not conformant. Errors are included in
the test output.

The link test only determines conformance with respect to function signature. The link test
neither proves nor disproves correctness of functionality or correctness of function usage.

For Java, a lookup table of classes and method signatures is built from a whitelist of Java APIs
and FACE interfaces from the standard. The lookup table also incorporates all classes supplied
1 POSIX and ARINC interface testing is performed on functions only. Data types and constants are not tested

comprehensively. A POSIX or ARINC conformance test should be used to fully test those aspects.
Vanderbilt University www.isis.vanderbilt.edu ISIS

Link

Link

Customer
Code

Conformant
Test Code

PASS

FAIL

Test
Result

Conformance Test Suite Manual Page 9 of 34

by the customer, preferring the class and method signatures derived by the standard where
duplication may exist. The table serves as the “gold standard” of allowable and/or expected
classes and methods. All supplier class files passed into the CTS are parsed and evaluated against
the lookup table to ensure the classes and methods used match what is in the lookup table. Any
classes and methods not found in the lookup table but used in supplier code is flagged as error
and included in the test output.

Introduction to Methodology

Two methods of performing the link test exist. One uses the target linker. The other uses the host
linker. The target linker is the linker used to produce an executable targeting the embedded
system. The host linker is the linker used to produce an executable targeting the PC where the
conformance test suite runs. Each method has its own advantages.

The target linker method is advantageous in that a project's existing build infrastructure can be
reused during conformance testing. Additionally, any conditionally compiled code based on
hardware architecture which is reflected in the compiler and linker will be included in the
conformance testing. The disadvantage is that conformance testing staff must know the details of
the target linker.

The host linker is advantageous in that its usage details are preselected in the conformance tool.
Its disadvantage is that conditionally compiled code based on hardware architecture which is
reflected in the compiler and linker may not be included in conformance testing. Additionally,
the project's build infrastructure would need to be modified to make use of the host compiler and
linker.

If you choose the target linker method, you must provide the conformance tool details about your
build tools. You must provide the path to and name of the compiler, linker, and archiver for your
build tools. Additionally, you must provide compiler flags, linker flags, and archiver flags to
provide correct behavior. For all but OSS tests, the flags must instruct the tools to ignore any
system included code such as standard headers and libraries. The flags must also select the
correct target language standard.

If you choose the host linker method, you must alter your project's build system to use the host's
build tools and recompile. Be mindful of any conditionally compiled code based on architecture
or compiler.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 10 of 34

Example flags for a non-OSS C segment test

Commonly Used Compiler Flags:

The table below provides the minimum set of equivalences you must provide.

Flag Purpose GNU Tools Example
Language standard selection
C ISO C 1999
C++ ISO C++ 2003
Ada ISO Ada 1995

-std=c99
-std=c++03 (or c++0x on some compilers)
-std=-gnat95

For Non-OSS Tests:
(compiler flags)
Disable bundled headers -nostdinc (-nostdinc++)
Disable builtin functions -fno-builtin
(linker flags)
Disable builtin libraries -nodefaultlibs -nostartfiles

C++ has language features which may need to be disabled based on the FACE Profile
or program coding conventions. The below compiler arguments are specific to GCC.
Do not use or allow exceptions. -fno-exceptions
Do not register static object destructors to be
called from the 'atexit()' method. 'atexit()' is
not in the Safety Base Profile and systems
are not expected to exit.

-fno-use-cxa-atexit

Do not generate code that allows trapping
instructions to throw exceptions. An
example of this is floating point errors.

-fno-non-call-exceptions

Do not use or allow Run-Time Type
Information.

-fno-rtti

Do not generate exceptions for NULL being
returned by 'operator new'.

-fcheck-new

Note: It has been determined that using compiler optimization flags (-O, etc) has caused invalid
conformance test results. Please do not use compiler optimization flags.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 11 of 34

Additional Methodology Information

When building your project, alter your compiler flags to include the conformance tool's
goldStandardLibraries directory for IOS, TSS, and OS headers. This gives you a known good
starting point so that your code is tested rather than the code provided with your build tools
which could result in false positives. Details on how to achieve this is described above in the
Target Linker Method section.

OSS Testing Methodology

Unlike the other segments, to test the OSS for FACE conformance, the system libraries and
include files will need to be used. You will want to specify the language standard, but you will
not want to disable the headers and built-in functions and libraries. You will also need to specify
the location of include files and libraries to be used in the system test, either by compiler and
linker option flags, or by selecting include paths and libraries via the configuration GUI as
described in the Testing an Operating System (OSS) Segment section below. The compiler
specific allowed definitions should also be blank.

C++ Testing Methodology

For profiles other than the general profile, if the standard template library is desired to be used
for a non-OS segment, it must be provided as part of the unit of conformance.

Java Testing Methodology

The Java testing methodology differs greatly from the methodology for C, C++, and Ada. This is
due to the standardized data format of Java's .class files allowing these files to be universally
queried for information. CTS supports Oracle SE 8’s JVM class file format.

PCS, PSSS, TSS and IOSS UoC class files are queried for their dependencies on any classes,
methods, or fields necessary to execute. These dependencies are compared against a white list as
defined by the standard. Violations are reported as errors. Additionally, native methods are
flagged as warnings for further inspection.

UoCs responsible for providing FACE interfaces (e.g., OSS, TSS, and IOSS UoCs) will have
their class files queried for the list of classes, methods, and fields they are expected to provide as
defined by the standard. Any omissions or incorrect definitions are reported as errors.

Note that all segment class files are checked for their usage of Java SE and EE (general profile
only) version 8 gold definitions. Third Party class definitions that provide a standardized runtime
environment and has been approved by FACE Consortium can be identified using an entry box
called Approved Framework on the PCS, PSS, TSS, and IOS configuration tabs of the CTS GUI.
The Approved Framework class definitions are added to the white list during evaluation of
segment class files.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 12 of 34

Initializing the Conformance Test Suite

What You Must Provide

• The programming language used in the segment(s) under test
• The OS Profile to utilize
• The OS Partition to utilize
• A directory for the log files and other artifacts
• A browser to display the conformance test results
• Build tool (compiler/linker/archiver) information (see Methodology above)

Procedure

1. Make sure you have performed the exact types configuration as described above, if
applicable.

2. Start the conformance test suite by running the runConformanceTest script in the main
test suite directory from the command line (runConformanceTest.bat for Windows,
runConformanceTest.sh for Linux). This will launch the conformance main menu as
shown below:

3. Click the “Configure Test Suite” button to launch the configure dialog box.
Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 13 of 34

4. Select the “General” tab at the top of the configuration dialog box to display the
generation information options as shown below:

5. (Optional) Select the project directory where the segment(s) interface software under test
is located. This will set the default directory for later steps in the configuration procedure
and will allow the tester to only modify this entry if the root directory of the software
changes. If the Project Base Directory is changed once other project configuration
information is entered. The test suite will automatically change to the new directory and
will notify the tester if there are inconsistencies with the new directory.

6. Select the programming language used by the segment(s) interface under test.
7. Select the operating system profile to be used by the segment(s) under test.
8. Select the operating system partition to be used by the segment(s) under test.
9. Select the OpenGL configuration to be used by the segment(s) under test.
10. Select the build OS architecture.
11. Choose the log directory to store the log files and all artifacts generated by the test.
12. Choose the location of the browser to use to display the test suite results. The test suite

will pick a default browser if none is specified. Since this may take a few seconds on
some systems, it is encouraged to set up the basic configuration on the general and build
tabs and save as the default configuration. See “Setting Default Configuration” on the
following page for more information.

13. Select the “Build” tab to the top of the configuration dialog box to display the general
build options as shown below:

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 14 of 34

14. You will need to scroll down to see all build options.
15. Choose any directories required to be in the path in order to compile, link and archive

code using your desired build tools. If using MinGW on Windows, the MinGW\bin and
the MinGW\msys\1.0\bin directories should be included. No test suite related directories
are required under Linux.

16. Choose the GNU-make compatible executable for the test suite to use. Type “pymake” if
using the included pymake software for the make option. The test suite will automatically
determine the appropriate path and command. Otherwise, the make executable can be
specified by the full path name, or if the path is included in the Path Directories entry
box, the file name is sufficient.

17. Choose the build options for compiler, linker, and archiver according to the Theory of
Operation section above. A field for processor specific compiles flags has been provided.
Please do not use any optimization flags for your build setup, since these can cause errors
in conformance testing. For Ada segments, you can choose a binder to use during the
build procedure. Note: Please specify the exact compiler, not the compiler collection if
possible (i.e. g++ over gcc for C++).

18. Choose the extension used for object files by the compiler.
19. Choose the extension used for executable files by the compiler. (Leave blank for no

extension.)
20. The Data Model analysis is written in Java. The test suite launches a JVM to run the data

model analysis during testing. For larger data models, the default heap size may not be
large enough. It is recommended to specify your heap size with the -Xmx java command
line option. (For a 2GB heap, you would list -Xmx2048m in the Java command line
options line.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Example build system configuration - Your development environment may require
different values

Conformance Test Suite Manual Page 15 of 34

Notes:
By pressing the “...” button, a directory or file dialog box will be launched to allow you to
graphically pick your response(s). Pressing the red x will clear the text entry box.

Setting Default Configuration

To make a given configuration the default when the test suite is started, save it to the
initialConfigurationWINDOWS.cfg or initialConfigurationLINUX.cfg in the
face_conformance_app subdirectory. It is suggested that the general and build tabs are
configured correctly for the build environment and then saved as the initial configuration.

Providing your configuration file to the verification authority would assure they have your
correct configuration for their conformance testing. By default these files are saved in the
configFiles sub-directory.

Compiler Specific Functionality

You will need to modify the compiler specific files as described in the configuration section
above.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 16 of 34

Testing a Portable Components Segment (PCS) Application

What You Must Provide

• Your project's object files
• Your project's data model

Procedure

1. Compile (but do not link) your project. (see Additional Methodology Information above)
2. Complete the procedure in the Initialize Conformance Test section above.
3. Select the PCS tab at the top of the configuration dialog box to display the portable

components information options as shown below:

4. Enter the full pathnames your project's object and/or library files. You may use the “…”
button to add your project files graphically. You may either specify each object and
library file, or you may chose the directory where object files are located. All object files
in the directory specified as well as object files in subdirectories will be chosen.
Currently, library files must be chosen individually, not by directory. A combination of
directories and and object/library files may be specified.

5. Check the Portable Components Segment check box. Notice the check mark on the PCS
tab.

6. Complete the procedure in the Data Model section below.
7. Click the Save As button to store this configuration for future use. You may click the

Load button to reuse this configuration in the future.
8. Click the “Ok” button to accept this configuration.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 17 of 34

9. Click the “Test Portable Components Segment” button on the main menu to test the
segment. (This may take a few minutes.) The results will be displayed in a web browser
when testing is complete. Artifacts (including the report shown in the web browser) will
be placed in the log directory you specified above.

Testing a Platform Specific Services (PSS) Segment
What You Must Provide

• Your project's object files
• Your project's data model

Procedure

1. Compile (but do not link) your project. (see Additional Methodology Information above)
2. Complete the procedure in the Initialize Conformance Test section above.
3. Select the PSS tab at the top of the configuration dialog box to display the platform

specific information options as shown below:

4. Enter the full pathnames your project's object and/or library files. You may use the “…”
button to add your project files graphically. You may either specify each object and
library file, or you may chose the directory where object files are located. All object files
in the directory specified as well as object files in subdirectories will be chosen.
Currently, library files must be chosen individually, not by directory. A combination of
directories and and object/library files may be specified.

5. Check the Platform Specific Services Segment check box. Notice the check mark on the
PSS tab.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 18 of 34

6. Complete the procedure in the Data Model section below
7. Click the Save As button to store this configuration for future use. You may click the

Load button to reuse this configuration in the future.
8. Click the “Ok” button to accept this configuration.
9. Click the “Test Portable Platform Specific Services Segment” button on the main menu to

test the segment. (This may take a few minutes.) The results will be displayed in a web
browser when testing is complete. Artifacts (including the report shown in the web
browser) will be placed in the log directory you specified above.

Testing a Transport Services Segment (TSS)
What You Must Provide

• Your project's include path
• Your project's header files
• Your project's object files
• Your project's data model

Procedure

1. Compile (but do not link) your project. (see Additional Methodology Information above)
2. Complete the procedure in the Initialize Conformance Test section above.
3. Select the TSS tab at the top of the configuration dialog box to display the transport

services information options as shown below:

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 19 of 34

4. Check the Transport Services Segment check box. Notice the check mark on the TSS
tab.

5. Select the type of TSS interface you wish to test.
• The TS Interface TSS UoP will test that your object files contain all TS

interfaces required by the standard for the given data model and use only
OSS calls that are allowed for a TSS.

• The TSS Type Abstraction will test that your object files contain all TS
interfaces required by the standard for the specified data model and use
only interfaces to a TS Type Abstraction Interface UoP and OSS calls that
are allowed for a TSS.

• The TS Type Abstraction Interface TSS UoP will test that your object files
contain all TS interfaces required by the standard and use only OSS calls
that are allowed for a TSS.

6. Enter any directories that should be in the include path for the TSS interface. You may
use the “…” button to add your project files graphically.

7. Enter the full pathnames of your project's TSS include/spec files. You may use the “…”
button to add your project files graphically.

8. Enter the full pathnames of your project's object and/or library files. You may use the
“…” button to add your project files graphically. You may either specify each object and
library file, or you may chose the directory where object files are located. All object files
in the directory specified as well as object files in subdirectories will be chosen.
Currently, library files must be chosen individually, not by directory. A combination of
directories and and object/library files may be specified.

9. If using register read callback interface, click the associated check box.
10. Complete the procedure in the Data Model section below.
11. Click the Save As button to store this configuration for future use. You may click the

Load button to reuse this configuration in the future.
12. Click the “Ok” button to accept this configuration.
13. Click the “Test Transport Services Segment” button on the main menu to test the

segment. (This may take a few minutes.) The results will be displayed in a web browser
when testing is complete. Artifacts (including the report shown in the web browser) will
be placed in the log directory you specified above.

Testing a Data Model

What You Must Provide

• Your project's FACE data model file.

Procedure

1. Complete the procedure in the Initialize Conformance Test section above.
2. Assure that at least one of the check boxes for either the PCS, TSS, or PSS is selected on

their respective configuration tab dialogs.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 20 of 34

3. Select the “Data Model” tab to display the data type information options as shown below:

4. Select the shared data model file associated with the segment under test.
5. Select the UoC supplied data model file associated with the segment under test.
6. The test suite will analyze the UoC Data Model file, determining its validity and the

Units of Portability found in the data model file.
7. You may see data types associated with a UoP by clicking on the properties button.
8. Select the Units of Portability to use with the segment under test.

Testing an I/O Services (IOS) Segment

What You Must Provide

• Your project's include path
• Your project's header files
• Your project's object files

Procedure

1. Compile (but do not link) your project. (see Additional Methodology Information above)
2. Complete the procedure in the Initialize Conformance Test section above.
3. Select the IOS tab at the top of the configuration dialog box to display the platform

specific information options as shown below:

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 21 of 34

4. Check the I/O Services Segment check box. Notice the check mark on the IOS tab.
5. Enter any directories that should be in the include path for the IOS interface. You may use

the “…” button to add your project files graphically.
6. Enter the full pathnames of your project's IOS include/spec files. You may use the “…”

button to add your project files graphically.
7. Enter the full pathnames your project's object and/or library files. You may use the “…”

button to add your project files graphically. You may either specify each object and
library file, or you may chose the directory where object files are located. All object files
in the directory specified as well as object files in subdirectories will be chosen.
Currently, library files must be chosen individually, not by directory. A combination of
directories and and object/library files may be specified.

8. Click the Save As button to store this configuration for future use. You may click the
Load button to reuse this configuration in the future.

9. Click the “Ok” button to accept this configuration.
10. Click the “Test I/O Services Segment” button on the main menu to test the segment. (This

may take a few minutes.) The results will be displayed in a web browser when testing is
complete. Artifacts (including the report shown in the web browser) will be placed in the
log directory you specified above.

Testing an Operating System (OSS) Segment

What You Must Provide
• Your target OS's include path
• Your target OS's object files

Procedure

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 22 of 34

1. Complete the procedure in the Initialize Conformance Test section above.
2. Select the OSS tab at the top of the configuration dialog box to display the platform

specific information options as shown below:
3. Click the Test Operation System Segment check box. Notice the check mark on the OSS

tab and each valid API test check options are now enabled. Valid APIs depend on
Language and Profile selections. See table below for more details.

Language/Profile ARINC
653

C Std
Library

C++ Std
Libary

HMFM Java Khronus
Group EGL
1.2

OpenGL
ES 2.0

OpenGL
SC 1.0.1

POSIX

C/GP X X X X X X

C/SB, C/SE X X X X X

C/S X X X X

C++/All X X

Ada/All X X

Java/GP X

Note: GP=General Purpose, SB=Safety Base, SE=Safety Extended, S=Security, All=All profiles
Table 1. OSS Tests based on language and profile

4. Check each OS API you wish to test. Notice their options are now editable.
5. For each OS API under test, place any specific compiler flags that are needed. Note:

general compiler flags can be specified under the Build tab. These flags should be
unique to the OS API under test.

6. For each OS API under test, place any specific linker flags that are needed. Note: general
linker flags can be specified under the Build tab. These flags should be unique to the OS
API under test.

7. For each OS API under test, enter any directories that should be in the include path for
each OS API interface. You may use the “…” button to add your project files graphically.

8. If the ARINC 653 API is under test, enter the full pathnames to the header definition files
associated with the interface. You may use the “…” button to add your project files
graphically.

9. Enter the full pathnames your project's object and/or library files. You may use the “…”
button to add your project files graphically. You may either specify each object and
library file, or you may chose the directory where object files are located. All object files
in the directory specified as well as object files in subdirectories will be chosen.
Currently, library files must be chosen individually, not by directory. A combination of
directories and and object/library files may be specified. Note: often system libraries are
specified using compiler/linker flags instead of specifying libraries directly. Either
method may be used.

10. Click the Save As button to store this configuration for future use. You may click the
Load button to reuse this configuration in the future.

11. Click the “Ok” button to accept this configuration.
12. Click the “Test Operating System Segment” button on the main menu to test the segment.

(This may take a few minutes.) The results will be displayed in a web browser when

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 23 of 34

testing is complete. Artifacts (including the report shown in the web browser) will be
placed in the log directory you specified above.

13. The result will be pass or fail if the operating system supplies the necessary calls based
on the profile.

Considerations for Testing a C++ Segment

When testing a C++ PC, PSS, IOS or TS UoC in a safety or security profile that uses C++
Standard Template Library API calls, a FACE conformant standard template library
implementation must be supplied with the UoC.

Considerations for using C and C++ together

It is very common for C++ programs to utilize C code. The FGSL allow this as well. The
libstdc++ profiles have the C99 headers that are specified in the C++2003 standard. If POSIX
headers or all C99 headers are required, please include the respective directory in the include
path when compiling your objects to undergo conformance testing. The POSIX directory will
need to come before the libstdc++ directory in your include path. The FGSL libstdc++ libraries
do not contain C functions, but the allowed clib or POSIX library are automatically included
under a C++ link test depending on the profile and partition.

Considerations for Testing an Ada Segment

Testing an Ada segment requires a small variation in the testing procedures from C and C++.
According to the standard, Ada Runtime Libraries are allowed, but if the Runtime Library is
packaged with the UoP, it must only use standard POSIX calls allowed according to the

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 24 of 34

profile/partition. If the Ada Runtime Libraries are part of the logical OSS, the use of the Ada
Runtime Libraries is verified via Inspection. In order to perform the link test for a packaged Ada
Runtime Library, you must include the Ada Runtime Library as part of your object/library files.
Additionally, you must compile the correct Gold Standard POSIX library to include as part of
your object library files. Since the test suite only supports compilation for one language at a
time, you must build the POSIX libraries before proceeding with Ada testing. This can be done
by changing your configuration from Ada to C, with the correct C compiler options, and generate
the gold standard libraries as described below. Once the libraries have been built, change the
configuration back to Ada, add the POSIX and Runtime libraries to your segment configuration
and proceed with the test. The test suite does generate Ada gold standard HMFM and ARINC
653 libraries.

Considerations for Testing a Java Segment

Testing a Java segment is very different from testing procedures for other languages. Since Java
is inspected directly instead of using a link test, there is not an option to generate gold libraries in
Java. For each test, Java Class Paths are used instead of object/library files. Either pick the
directory(s) or pick jar files. Note that directories can contain .class files or .jar files. Do not pick
.class files individually. Include paths are not used under Java tests. Under most systems, javac
should be used as the compiler (1.8 version) and jar should be used as the archiver, and the
object file extension should be set to class under the build tab.

Use of Approved Frameworks
Approved Framework are classes that represent a third-party implementation of an OSS Interface
not provided in the FACE Gold Libraries. Prior to version 2.1.0r8 and 2.1.1r4, these definitions
are considered as a subset of the Supplier Class Definitions and provided by the supplier as a part
of the “Java Class Path”. Starting with version 2.1.0r8 and 2.1.1r4, a GUI entry has been added
to PCS, TSS, PSS, and IOS tabs of the configuration dialog box, see below figure. It has the
same functionality as the “Java Class Path” entry that allows selection of directory(s) of .class
and .jar files, or individual jar files.

Currently, the FACE Technical Standard makes provisions for one Approved Framework, OSGi,
which is Java-based. OSGi is comprised of three specifications, but only the OSGi Core
specification is allowed for FACE Conformance.

For verifying a UoC’s adherence to the OSGi Core API, provide the JAR file containing the
interfaces defined in the OSGi Core specification found through the OSGi website
(https://www.osgi.org/). This JAR file can be placed as an entry to CTS as an approved
framework.

Note: Unless otherwise stated in an Approved Correction, the OSGi Core specification JAR file
from OSGi is the only input allowed via the Test Suite’s approved framework mechanism. The
third-party class definitions that provide a Component Framework must be proposed to and
approved by the FACE Consortium before it can be used as an Approved Framework by CTS.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 25 of 34

Approved Framework Entry – Java Only

Unused Code Paths in Third-Party Libraries
Typically, only a portion of the third-party libraries included for testing contain references
needed to execute the UoC under test. To avoid unresolved reference errors from a third-party
library’s compile-time dependencies, it is acceptable to apply software tools to eliminate un-used
code, e.g., ProGuard.

After applying the software tool, the resulting libraries are provided as part of the UoC. Addi-
tionally, a report generated from applying the software tools to remove the unused code should
also be provided to the Verification Authority.

This approach shrinks the libraries provided to contain only dependencies needed by a UoC
using the UoC as the set of entry-points. The ancillary calls and dependencies are eliminated
leaving only calls and dependencies used by the UoC. The following figure is a high-level
model showing a UoC where the green arrows represent the dependencies needed by the UoC for
conformance testing and the red arrows represent dependencies in the third-party library not
needed for testing the UoC.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 26 of 34

Used and Unused References in Third-Party Libraries – Java Only

Considerations for Testing a Data Model

A Model Report Tool has been included with CTS that reads a data model (i.e. .face file) and
produces a report about the model. The report is in the form of a PDF or HTML file. The
purpose of the report is to provide insight into the model’s consistency with a UoC's design for
items the CTS cannot validate. This report may also provide insight into a UoC's use of the
FACE Technical Standard, wherein a key intent is to model the interfaces in a detailed manner.

The Model Report Tool is intended to be invoked directly by a user and as such CTS does not
invoke it. The tool can be found at face_conformance_app/java_apps/FACEModelReport/
and the user guide is located at face_conformance_app/java_apps/FACEModelReport/docs/.
Please see the user guide for details on how to use the tool.

Note: Windows 10 is the only supported operating system for the Model Report Tool. It
may/may not run on CentOS 7.

Generating Gold Standard Libraries

You do not have to link to the FACE gold standard libraries (FGSL) outside of the test suite, but
they may be useful to incorporate into your automated build system. You will need to compile
your source code with the FGSL header files in order to run the conformance test(s) correctly.
Otherwise, you will/may introduce compiler specific method calls that are internal to standard
OS libraries headers. (See Theory of Operation above.)

The libraries generated in the goldStandardLibraries directory will get overwritten during each
conformance test. This option will allow you to save the allowable gold standard libraries for the

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 27 of 34

segments you have specified in the configuration in a user specified directory. The default is the
test suite's sample directory. There is also a readme.txt file that is generated which will specify
which include directories containing FGSL headers are allowed for your configuration's
segments. This option is provided to aid the user in compiling and building against the FGSL
outside of the test suite and is not needed to be pressed during conformance testing of segments.

What You Must Provide

• Your Segment(s) general and build configurations
• Segments which you wish to generate allowable Gold Standard Libraries to link against
• To generate FGSL For PCS, PSS, and TSS, the associated USM and SDM

Procedure

1. Follow the procedure for testing a segment for each segment you wish FGSL generated.
You may need to pick dummy segment object/header directories if they do not yet exist.

2. Click the “Generate Gold Standard Libraries” button on the main menu. Pick the
directory where you wish the files to be generated.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 28 of 34

Viewing Test Suite Results

Once the Test Segment button is pressed, the test suite will conduct the conformance test and
launch a browser with the results in HTML format. The file will be called
ConformanceReport.html in the log directory specified in the configuration. The resulting page
also uses the ConformanceReport.css cascading style sheet and the ConformanceReport.js java
script file as well as java script files in the scripts sub-directory and the style sheets in the styles
sub-directory. All log files generated in the test will also be found in the log directory, although
the same log files are found inside the HTML report file. Previous tests are completely erased
with each test run and may also be deleted from the main menu “Delete Previous Test” button.
You must make a copy if you wish to preserve a given test result. (Or alternatively, change the
log directory in the configuration. An example configuration is shown below:

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 29 of 34

An example of a passed portable component is given in the figure below:

To expand information on the configuration or test result, simply click on the line. If there is
source code and/or log results associated with a test, they may be viewed by expanding the test
results recursively. See examples of the expanded configuration and test results below.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 30 of 34

For a failed conformance test, by examining the test source code and resulting log files, the
source of the non-conformance should be able to be determined.
In addition to the HTML report, the test suite writes JUnit XML formatted files that are useful in
automated build/test systems. An example XML file from a sample IOS test is included below.
By using the command line version of the test suite described on the next page, conformance
tests can easily be incorporated into an automated build process. The Junit XML files that are
generated are more easily processed by integration software, such as Jenkins, than the more
human readable HTML formatted file.

As shown, each test is recorded along with its name. Also, the JUnit report details the test
segment, language, and profile as specified in the configuration file. Additionally, inside each
test case node, the log file contents are included in a <system-out><\system-out> node in order
to allow the inspection of the result of running each test. Also, in case of a test failure, a
<failure><\failure> node is inserted for tests that fail the conformance test. Currently the JUnit
test are generated for C, C++, and Ada tests.

Special Test Cases:

There are a few test cases that may result in an INSPECTION REQUIRED instead of the typical
PASS/FAIL result. For PCS and PSS tests, a subsequent test occurs to determine if functions
restricted to intra-UoP communication listed in section E-4 of the standard. If any of these
function calls exist in a PCS/PSS, a code inspection is required. The second test case occurs for
a safety extended profile for any PCS, PSS, IOS, or TSS. In this case, if a fork is called, then it
must be followed by an exec, which requires code inspection. Neither of these tests are
performed until the segment passes conformance without these restricted cases. For OSS, TSS
and IOS tests performed using Ada, certain compile-time checks on the interfaces to be provided

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 31 of 34

by these segments will only produce a compiler warning (not an error). To alleviate the Test
Suite from assuming a specific vendor’s compiler warnings, these tests are flagged to inspect the
compiler output for warnings caused by the test’s source code file.

Including Test Notes with Configuration

Notes about partition tests or testing configurations may be added on the “Notes” tab. Any notes
will be shown in the Test Configuration section of the conformance report.

Test Suite Command Line Options:

There are a number of options you can use when running the test suite start-up script
(runConformanceTest.sh on Linux runConformanceTest.bat on Windows)

Without any options or configuration files, the Test Suite GUI is launched with an initial
configuration. The test suite comes with a default initial configuration file, but you can set your
own by overwriting the initialConfigurationLINUX.cfg or initialConfigurationWINDOWS.cfg
files in the face_conformance_app directory.

If the test suite is launched with a configuration file listed, the test suite will run without the GUI
and save the results to the log directory listed in the configuration. The test suite will exit with a
return code of 0 if the segment(s) under test is conformant. It will return 1 if the segment(s) fails
conformance. This would be useful for automated testing of segments without user interaction.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 32 of 34

Multiple configuration files can be passed to run by test suite, but it is important to have different
log directories in each configuration file, otherwise the test results would be overwritten by
subsequent test.

The usage statement from the start-up script is shown below (Linux version, but options are same
for Windows)

Usage: runConformanceTest.sh [options] [config_file1] [config_file2] ...

If config file(s) is(are) supplied, conformance test will run directly (no
GUI). If no config_file is supplied, the test suite GUI will launch for
interactive control of conformance test.

Options:
-h, --help Show this help message and exit

-d new_project_directory,
--projectDir=new_project_directory

Run test suite using a saved configuration file but changing
the project directory to new_project_directory. Changing
project directory only affects segment related files, not
build files. A configuration file must be specified, and the
original project directory must be specified in the
configuration file. Multiple configuration files may be
specified.

-m --model Run data model test only.
-o new_log_directory,
--logDir=new_log_directory

Run test suite using a saved configuration file but changing
the log directory to new_log_directory.

-g, --gui Run test suite with GUI even if a configuration file is
supplied.

-v, --version Echo test suite version and FACE Standard version against
which conformance is checked.

-l generated_library_directory,
--gsl=generated_library_directory

Generate Gold Standard Libraries needed by segments
specified in the configuration file and store in the
generated_library_directory. A configuration file must be
specified, but subsequent configuration files will be
ignored

Example Segments

The test suite has a sub-directory named “sample” that contains very simple examples of each
segment in all four supported languages. Please refer to the readme in this directory for more
information.

Vanderbilt University www.isis.vanderbilt.edu ISIS

Conformance Test Suite Manual Page 33 of 34

Known Issues

The Makefiles that are used to build both the gold standard libraries and conformance tests are
flexible enough to handle most compilers without any alteration other than the configuration
options that can be specified in the configuration menu. However, in extreme circumstances, it
may be necessary to alter them for a unique build environment. The makefiles used for
conformance tests are found in the conformanceInterfaceTests/LANGUAGE/SEGMENT
directories. The makefiles used to build the gold libraries are in the
goldStandardLibraries/LANGUAGE directories.

If system headers are used instead of gold standard headers in compilation of segment software
under tests, a conforming segment may still fail the link test due to internal compiler issues. For
example, using gcc and standard system headers, a conforming Portable Component has been
shown to fail due to an undefined reference to __stack_chk_fail. These issues can be resolved by
adding allowable function calls to the CompilerSpecific gold standard library described above.

Note: The Configuration file structure has changed greatly from version 1.0 of the conformance
test suite and cannot be ported into 2.x conformance tests. The configuration file structure has
changed slightly from previous versions of the 2.x conformance test but may be read by the
current test suite. It will prompt you to save any old configuration files in the new format.

Acknowledgments

The test suite utilizes the following freely distributable software packages:

pyparsing 2.0.1
http://pyparsing.wikispaces.com/
Author: Paul McGuire
License: MIT License

stringtemplate 3.1
http://www.stringtemplate.org/
Author: Benjamin Niemann
License: BSD

Protocol Buffers - Google's data interchange format
http://code.google.com/p/protobuf/
Copyright 2008 Google Inc. All rights reserved.
License: New BSD

ANTLR
http://www.antlr2.org/
Copyright (c) 2003-2006, Terence Parr
License: BSD

Vanderbilt University www.isis.vanderbilt.edu ISIS

http://www.antlr2.org/
http://code.google.com/p/protobuf/
http://www.stringtemplate.org/
http://pyparsing.wikispaces.com/

Conformance Test Suite Manual Page 34 of 34

References

The Java Virtual Machine Specification, Java SE8 Edition, Chapter 4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html

Vanderbilt University www.isis.vanderbilt.edu ISIS

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html

	Introduction
	Installation And Configuration
	System Requirements
	Common system requirements
	Optional software

	Installation
	Configuration
	NULL:
	Exact Types:
	OpenGL:
	Allowed Definitions:

	Theory of Operation
	Commonly Used Compiler Flags:

	Initializing the Conformance Test Suite
	Testing a Portable Components Segment (PCS) Application
	Testing a Platform Specific Services (PSS) Segment
	Testing a Transport Services Segment (TSS)
	Testing a Data Model
	Testing an I/O Services (IOS) Segment
	Testing an Operating System (OSS) Segment
	Considerations for Testing a C++ Segment
	Considerations for using C and C++ together
	Considerations for Testing an Ada Segment
	Considerations for Testing a Java Segment
	Use of Approved Frameworks
	Unused Code Paths in Third-Party Libraries

	Considerations for Testing a Data Model
	Generating Gold Standard Libraries
	Viewing Test Suite Results
	Including Test Notes with Configuration
	Test Suite Command Line Options:
	Example Segments
	Known Issues
	Acknowledgments
	References

